
Topic 16 Samples vs. Populations

In previous lectures we looked at full populations of data (e.g. all NCAAD1
mens basketball games in the 2018/2019 season) and samples of data collected
from underlying populations (e.g. the data for the Notre Dame Combine partic-
ipants in the years 2015 2016 could be regarded as a sample from the population
of Notre Dame Combine participants since the year 2000, which in turn could
be regarded as a (biased) sample from all Combine participants since the year
2000).

Our data on the population of NFL players in 2014 could be regarded as the
entire population data for that year or could be regarded as a (biased) sample
of players from the population of all NFL players ever.

Also the performance statistics for Jeremy Lin and Stephen Curry for the
2015/2016 season could be viewed as a sample of their overall performance over
the many years or as a population of performance statistics fro that season.

> CombineND<-read.csv("combineND.csv",header = TRUE)

> PPM<-read.csv("PPM.csv",header = TRUE)

> NFL<-read.csv("NFL.csv",header = TRUE)

Samples vs. Populations
We used population data in Basketball to attempt to make predictions. If we
know the data distribution for a variable, we can estimate the chances that
our next observation of that variable will take a particular value. If we do not
have all of the population data available, we can use a sample to estimate the
distribution of a variable in the underlying population. The sample distribution
may or may not reflect the underlying population distribution depending on the
amount of bias in the selection process for the sample, and the degree of bias
that occurs from randomness. The latter tends to be minimized when we work
with large samples, the former when we try to make our selection process as
random as possible.

Traditionally it has often been too costly or difficult to collect all of the data
from a population to figure out what the entire population distribution looks
like for some variables which requires a census or election. Recently advances in
technology have made the processing of some data of this kind easier and more
accessible, however we are still reliant on the traditional methods of estimating
the population statistics and distribution from a sample for much of the data we
are interested in. From our sample we build a model of the underlying
population distribution of the variable in question.

• The data points in our sample (hopefully selected as randomly as possible
) are just a subset of all possible values of the variable in question.
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• Their relative frequencies in the sample may or may not reflect the corre-
sponding relative frequencies in the population.

• The sample mean will give us an estimate of the population mean but it
is unlikely that it will coincide exactly with the population mean.

Example (Sample Statistics vs. Population Statistics) Suppose we view
our data on the population of NFL players as all of the data for the population
of NFL players in 2014. Suppose also we did not have all of the data available
and we wanted to estimate he average height of a player in the NFL that year.
We could choose a random sample of players of size 20 from the population
and use the sample average to estimate the population average. We can use
the sample() function in R to take a random sample from the population of
players’ heights.

> mean(NFL$HT) #True population mean

[1] 74.02001

> nrow(NFL) #population size

[1] 1699

> s<-sample(NFL$HT, 20) #random sample of size 20 without replacement

> s

[1] 75 73 75 73 79 72 73 78 71 80 72 78 71 72 70 78 74 77 75 68

> mean(s) #estimate for population mean

[1] 74.2

> s1<-sample(NFL$HT, 20) #different sample gives different estimate

> mean(s1)

[1] 74.05

> s2<-sample(NFL$HT, 10) #smaller sample gives worse estimate in general

> mean(s2)

[1] 74.3

> s3<-sample(NFL$HT, 5)

> mean(s3)
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[1] 74.2

So before we make statistical inferences about a population variable
and population statistics from a sample we must think

1. about the different types of population distributions that the sample might
be coming from and

2. the variation in samples that we might get from such a population.

3. Then we can turn the question around and say ”our sample looks like ....,
what are the chances the population looks like .....”.

The Experiment Framework: We can consider our data collection as
many repeats of the same experiment ”choose an element of the population at
random and record the value of the variable in question”. It turns out this
framework of experiment, outcome, sample space, event and random
variable adds a lot of clarity to how we think about probability and
it is important to keep it in mind when conducting research with
statistics.

• An Experiment is an activity or phenomenon under consideration. The
experiment can produce a variety of observable results called outcomes.
The theory of probability makes most sense in the context of activities
that can be repeated or phenomena that can be observed a number of
times. We call each observation or repetition of the experiment a trial.

• A sample space for an experiment is the set of all possible outcomes
of the experiment. Elements of the sample space are sometimes simply
called outcomes or if there is a risk of confusion they may be called a
sample points or simple outcomes.

• An Event E is a subset or sub collection of the simple outcomes of the
sample space S. We denote the probability that an event E will occur by
P (E).

• Given two events A and B, we can define a new event A ∩ B (called the
intersection of A and B) which is the event that both A and B occur.
The simple outcomes in the set corresponding to A ∩ B is the set of all
simple outcomes which are in both events.

• Two events A and B are independent if the fact that A has occurred
has no bearing on the probability that B will also occur. In this case
P (A ∩B) = P (A)P (B).
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• If E1, E2, . . . , En are events in a sample space, we say they are independent
if the probability of any one of them does not depend in any way on what
combination of the other events happen. In this case, we have P (E1 ∩
E2 ∩ E3 · · · ∩ En) = P (E1)P (E2)P (E3) . . . P (En).

• Trials of an experiment are independent if what happens on one
trial is not influenced in any way by what happens on the other trials.

• A Random Variable is a rule that assigns a number to each outcome of
an experiment. There may be more than one random variable associated
with an experiment.

Example

Experiment: Flip a coin 4 times and observe the sequence of Heads and Tails.
Sample Space: {HHHH,HTHT, THTH, . . . } (16 sequences)
Example of an event: A = “the event that I see a head on the first flip” =
{HHHH,HHHT,HHTH,HHTT,HTHH,HTHT,HTTH,HTTT}
Example of another event: B = “the event that I see a head on the last flip”
= {HHHH,THHH,HTHH, TTHH,HHTH, THTH,HTTH, TTTH}
A ∩B = {HHHH,HHTH,HTHH,HTTH}
Random Variable associated to this experiment: X = the number of H’s
observed. (if the outcome is HHTH, the value of X observed is 3)
Random Variable associated to this experiment: Y = the number of T’s
observed.
Both variables X and Y are discrete.

Example

Experiment: Roll a pair of fair six sided dice and observe the numbers on the
uppermost face.
Sample Space:

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

Event: A = the event that I see a six on the first roll = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.
Event: B = the event that I see a six on the second roll = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)}.
A ∩B: {(6, 6)}.
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Random Variable: X = sum of the numbers on the uppermost faces. (discrete
random variable).

Example

Experiment: Record the time for the FortyYD for a participant in the NFL
Combine. Sample Space: (0,∞).
Event: A = event that the time recorded is less than 4.5 seconds. A = (0, 4.5).
Random Variable The observed time itself; (continuous random variable).

Example:
Experiment: Choose the data of one NFL player at random from the data
stored in the data set NFL.

> N<-nrow(NFL)

> N

[1] 1699

> v<-1:N

> s1<-sample(v, 1)

> s1

[1] 853

> NFL[s1,]

Team X. Name First.Name Last.Name POS HT WT AGE

853 Saints 33 Jean-Baptiste, Stanley Stanley Jean-Baptiste CB 75 218 26

BDAY EXP College AVG.Annual.Salary Birth.City Birth.State Race

853 4/12/90 0 Nebraska 909183 Miami, FL Florida Black

HS HS.City HS.State Pro.Bowler Champ X..Of.Teams Heisman

853 Central (Miami, FL) Miami, FL Florida 0 NO 1 NO

X

853

Sample Space: The sample space here is all possible rows in the data set (or
equivalently all possible players in the data set)
Random Variables: There are a number of random variables associated to
the outcome of this experiment (all of which are recorded in the data set); HT,
WT, AGE,Salary,EXP.
Example of an Event: A = the event that we choose a player with height
above 75 inches.
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Example of an Event: B = the event that we choose a player with age less
than 30.
Example of an Event: A ∩ B = the event that we choose a player with age
less than 30 and height greater than 75 inches.

Discrete Random Variables and Their Probability Distributions

When we assign probabilities to the outcomes in our sample space, we want
those probabilities to reflect the relative frequency with which the outcomes
would occur if the experiment was repeated many times. Sometimes, we use
logic to assign such probabilities and sometimes we use experience or repeated
experimentation to observe relative frequencies of outcomes and assign prop-
bailities accordingly. The Law of Large Numbers says that both of these
methods give the same answer if we repeat the experiment many many times.
However one should also be aware of The chaos of small numbers, namely in a
small number of trials of an experiment, the relative frequencies of outcomes in
a sample space may not resemble their logical probabilities.

Example(Law of Large Numbers in action: ) If our experiment is to roll a fair
six sided die and observe the number on the uppermost face, we can derive by
logic that the probability of a ”6” is 1/6. If we repeat the experiment 10 times,
then the relative frequency of a ”6” in the data may not be close to 1/6, but if
we repeat the experiment 1000 times, the relative frequency of a ”6” in the data
should be close to 1/6 ≈ 0.1666667. We can simulate many rolls of a die with
the sample() function in R:

> k<-1:6 #vector of outcomes

> p<-c(1/6,1/6,1/6, 1/6,1/6,1/6) #vector of probabilities

> s<-sample(k,size=10,prob=p, replace=TRUE) #10 rolls

> s

[1] 4 3 2 5 5 3 1 5 4 2

> table(s)

s

1 2 3 4 5

1 2 2 2 3

> table(s)/10 #estimates of probabilities using relative frequencies

s

1 2 3 4 5

0.1 0.2 0.2 0.2 0.3
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> s1<-sample(k,size=1000,prob=p, replace=TRUE) #1000 rolls

> table(s1)

s1

1 2 3 4 5 6

177 168 157 175 174 149

> table(s1)/1000 #estimates of probabilities using relative frequencies

s1

1 2 3 4 5 6

0.177 0.168 0.157 0.175 0.174 0.149

> s2<-sample(k,size=10000,prob=p, replace=TRUE) #10,000 rolls

> table(s2)

s2

1 2 3 4 5 6

1724 1656 1653 1691 1625 1651

> table(s2)/10000 #estimates of probabilities using relative frequencies

s2

1 2 3 4 5 6

0.1724 0.1656 0.1653 0.1691 0.1625 0.1651

Assigning Probabilities to Outcomes in The Sample Space.
When assigning probabilities to discrete outcomes in a sample space, we

adhere to the following rules in keeping with the intention that the probabil-
ities assigned should reflect the relative frequency of each outcome
in many repeated trials of the experiment. If the outcomes are listed as
{o1, o2, o3, . . . } and the respective probabilities as p1, p2, p3, . . . , then we make
the following rules for p1, p2, p3, . . . :

• 0 ≤ pi ≤ 1 for all i,

• p1 + p2 + · · · = 1.

Equally Likely Outcomes If we can use logic to determine that all outcomes
in a finite sample space are equally likely, then combining our rules and the fact
that all outcomes are equally likely, we get the probability of each outcome is
1/(number outcomes in S.S.).

The probability of an event A, denoted P (A), is the sum of the probabilities of
the outcomes in the event. In an equally likely sample space the probability of
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an event A is the number of outcomes in A divided by the number of outcomes
in the sample space.

P (A) =
# outcomes in A

# outcomes in S.S.

Example If I roll a die twice, I get 36 equally likely outcomes.

Sample Space: =

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

Consider the event E = “The sum of the numbers on the uppermost faces is 7”.
The number of outcomes in E is 6, therefore P (E) = 6/36 = 1/6.
Consider also the two events A = “get a six on the first roll”, B = “get a six on
the second roll”. A and B are independent events since the probability that we
get a six on the second roll is not influenced in any way by what happens on
the first roll. The event that we get a six on both rolls is A∩B = {(6, 6)}. We
could caluclate the probability of A∩B with our formula for the probabilities of
events in equally likely sample space but because they are independent events
we can also multiply the probabilities of A and B to get P (6, 6) = 1/36.

Example:
Experiment: Choose the data of one NFL player at random from the data
stored in the data set NFL.

> N<-nrow(NFL)

> N

[1] 1699

> v<-1:N

> s1<-sample(v, 1)

> s1

[1] 772

> NFL[s1,]

Team X. Name First.Name Last.Name POS HT WT AGE BDAY EXP

772 Bills 92 Wynn, Jarius Jarius Wynn DE 75 285 30 8/29/86 6

College AVG.Annual.Salary Birth.City Birth.State Race HS
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772 Georgia 795000 Augusta, GA Georgia Black Lincoln Co.

HS.City HS.State Pro.Bowler Champ X..Of.Teams Heisman X

772 Lincolnton, GA Georgia 0 1 5 NO

Sample Space: The sample space here is all possible rows in the data set (or
equivalently all possible players in the data set)
Since each line of data is a an outcome in our sample space the probability that
we choose a particular line of data (say that of Tom Brady) with our random
sampling method is 1/N , where N = the number of rows of data.

Probability of an Event: A = the event that we choose a player with
height above 75 inches.

P (A) =
# outcomes in A

# outcomes in S.S.
=

# players with H > 75

# rows of data

> P_A<-length(NFL$HT[NFL$HT>75])/nrow(NFL)

> P_A

[1] 0.3090053

Probability distribution of a random variable:
The probability distribution of a discrete random variable is just a list of the
probabilities we assign to each possible value of the random variable. It can be
presented in a number of ways. For a finite discrete random variable, we can
present the distribution as a table consisting of a list of the possible values of
the variable X alongside their probabilities or as a bar graph.

Example An experiment consists of flipping a coin 4 times and observing the
sequence of heads and tails. The random variable X is the number of heads in
the observed sequence. Use the equally likely sample space

S.S. = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT,

THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}.

to fill in probabilities for each possible value of X in the table below.
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X (# Hs) P(X)
0

1

2

3

4

We can draw a barplot showing this distribution with our barplot() command:

> x<-c(0,1,2,3,4)

> px<-c(1/16,4/16,6/16,4/16,1/16)

> names(px)<-x

> barplot(px, xlab="X = Number of Heads",ylab="Probability" )
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Example(using relative frequencies to assign probabilities) If we con-
sider the following experiment:
Experiment: Pick an NFL player from the NFL data set at random and
record their height, H.
We can figure out the frequencies of players with each height in the data with
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table() command and use the relative frequencies as probabilities for the possi-
ble values of H. We could also use this sample as empirical evidence to estimate
the distribution of H for all NFL players (not just those playing in 2014 ).

> nrow(NFL)

[1] 1699

> HT.freq<-table(NFL$HT)

> HT.freq

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

2 3 24 47 111 126 179 208 223 251 213 164 92 38 15 3

The table below shows the probability distribution of our random variable H.

H 66 67 68 69 70 71 72 73
P(H) 2/1699 3/1699 24/1699 47/1699 111/1699 126/1699 179/1699 208/1699

H 74 75 76 77 78 79 80 81
P(H) 223/1699 251/1699 213/1699 164/1699 92/1699 38/1699 15/1699 3/1699

We can also present the distribution of this random variable as a barplot:

> barplot(HT.freq, xlab="Height",ylab="Frequency", )
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Continuous Random Variables and their probability distributions:
The probability distribution of a continuous random variable cannot be repre-
sented in a table since the possible values of the variable cannot be separated.
The distribution is represented using the graphical method as a continuous curve
and is called a probability density function. Probabilities are calculated for
intervals instead of particular values. The probability that the value of a ran-
dom variable will fall in the interval [a, b], denoted P (a ≤ X ≤ b) is given by
the area under the probability density function above that interval. The area
under the entire probability density curve is 1. We have already created density
functions from our census data for the NFL players in 2014 using R.

Since Height is normally considered to be a continuous random variable, it would
be more appropriate to represent the distribution of heights with a density curve.

> hist(NFL$HT, main="Histogram and Density",xlab="Height",

+ probability=TRUE, xlim=range(c(60,85)),ylim=range(c(0,0.17)) )

> lines(density(NFL$HT,na.rm=TRUE),lwd=2)
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R finds the density (a continuous curve with area beneath it = 1) which best
fits our data. To find the actual area underneath the curve over an interval,

12



we would need some methods from calculus. Most of the densities that we deal
with, will be well documented densities, and we can calculate the probabilitioes
required using a computer or calculator.

Below we create plots of the densities for the heights of players in the NFL,
MLB and the NBA. You should load the MLB and NBA data files to replicate
this.

> NBA<-read.csv("NBA.csv",header = TRUE)

> MLB<-read.csv("MLB.csv",header = TRUE)

> plot(density(NBA$Ht,na.rm=TRUE),xlim=range(c(65,90)),

+ ylim=range(c(0,0.2)),main="Height",xlab="Height",col="red" )

> lines(density(MLB$Height,na.rm=TRUE),lwd=2,col="blue")

> lines(density(NFL$HT,na.rm=TRUE),lwd=2)
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If M denotes the height of a MLB player chosen at random from the data, the
probability that their height is between 75 and 80 inches, P (75 ≤M ≤ 80) is the
area under the blue curve between 75 and 78. This is approximately 0.371. If B
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denotes the heights of NBA players then P (75 ≤ B ≤ 80) is the area under the
red curve over that interval which is larger (in fact it is approximately 0.477).

The densities for salaries of the three groups are shown below.

> plot(density(NBA$Salary,na.rm=TRUE),xlim=range(c(0,35000000)),

+ ylim=range(c(0,0.0000006)),main="Salary",xlab="Salary",col="red" )

> lines(density(MLB$SALARY,na.rm=TRUE),lwd=2,col="blue")

> lines(density(NFL$AVG.Annual.Salary,na.rm=TRUE),lwd=2)
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Mean and Standard Deviation of a Random Variable We have used
the mean x̄ and standard deviation s to measure center and spread of a data
set. The population mean µ and population standard deviation σ are used for
the same purpose, but have slightly different methods of calculation and hence
the different notation.

Expected value of a Random Variable As with our data sets, the expected
value of a random variable is the balance point of the graphical representation
of the distribution of the variable. It is a weighted average. To calculate the
expected value of a finite discrete random variable X, we can draw on our
knowledge of the relative frequency version of the formula for the mean of a
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sample. If we replace the relative frequency by probabilities we get the formula
for the expected value of the random variable X shown below.

IfX is a random variable with a finite number of possible values x1, x2, . . . , xn
and corresponding probabilities p1, p2, . . . , pn, the expected value of X, de-
noted by E(X) or µ, is

µ = E(X) = x1p1 + x2p2 + · · ·+ xnpn.

Outcomes Probability Out.×Prob.
X P(X) XP(X)
x1 p1 x1p1
x2 p2 x2p2
...

...
...

xn pn xnpn
Sum = E(X) = µ

Note: If we run a large number of trials of the experiment, say N,
and observe the value of the random variable X in each, x1, x2, x3, . . . , xN , we
should have that µ = E(X) ≈ x1+x2+x2+···+xN

N
= x̄ or

E(X)N ≈ x1 + x2 + x2 + · · ·+ xN .

Example An experiment consists of flipping a coin 4 times and observing the
sequence of heads and tails. The random variable X is the number of heads in
the sequence. Find µ = E(X).

X P(X)
0 1/16
1 4/16
2 6/16
3 4/16
4 1/16

To calculate the expected value of a continuous random variable X, also
denoted by µ or E(X), we need to use integration (from calculus). However
it has the same geometric meaning as its sample counterpart as the
balance point of the population distribution and thus we can get an
estimate by looking at the density function. For the most part we consider it
as a fixed but unknown entity and explore how it relates to the estimate we get
from the sample; namely the sample mean x̄.

Population variance and standard deviation The population variance for
a random variable X is defined as

σ2(X) = V AR(X) = E((X − µ)2) = E(X2)− µ2.
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The population standard deviation σ is the square root of the population vari-
ance, σ =

√
σ2. For a continuous random variable, we need integration to

calculate its value, however we will for the most part be estimating the popula-
tion variance for these variables with our sample variance.

If X is a random variable with values x1, x2, . . . , xn, corresponding proba-
bilities p1, p2, . . . , pn, and expected value µ = E(X), then

Variance = σ2(X) = p1(x1 − µ)2 + p2(x2 − µ)2 + · · ·+ pn(xn − µ)2

and

Standard Deviation = σ(X) =
√
σ2(X) .

xi pi xipi (xi − µ) (xi − µ)2 pi(xi − µ)2

x1 p1 x1p1 (x1 − µ) (x1 − µ)2 p1(x1 − µ)2

x2 p2 x2p2 (x2 − µ) (x2 − µ)2 p2(x2 − µ)2

...
...

...
...

...
...

xn pn xnpn (xn − µ) (xn − µ)2 pn(xn − µ)2

Sum = µ Sum = σ2(X)

One may also calculate E(X) as E(X2)− µ2.

Example An experiment consists of flipping a coin 4 times and observing the
sequence of heads and tails. The random variable X is the number of heads in
the sequence. Find σ(X).

X P(X)
0 1/16
1 4/16
2 6/16
3 4/16
4 1/16
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